
Contents

1 Compuertas 1

1.1 Inversor . 1

1.2 NANDs . 2

2 Boolean logic 5

2.1 Teoremas Lógicas . 5

2.1.1 Teoremas fundamentales . 5

2.1.2 Teoremas de múltiples variables . 5

2.1.3 Teoremas de DeMorgan . 6

2.2 Simplificación de expresiones con álgebra booleana 6

2.3 Mapas de Karnaugh . 7

3 Combinatorial circuits 9

3.1 Decodificadores . 9

3.2 Codificadores . 9

3.3 Multiplexores . 11

4 Digital arithmetic 13

4.1 Sumas en binario y en hex . 13

v

CONTENTS

4.2 Medio sumador . 14

4.3 Sumador completo . 14

4.4 Complemento a dos . 15

5 Arithmetic and logical unit: ALU 17

5.1 Sumador . 17

5.2 Comparación de magnitudes . 19

5.3 Integración de la ALU . 20

6 Eagle 23

7 Flip flops 25

7.1 Lógica combinacional vs. secuencial . 25

7.2 S-C (S-R) NAND FF . 26

7.3 NOR latch . 27

7.4 S-C flip-flops con reloj . 27

8 J-K Flip flops 29

8.1 D flip-flops . 29

8.2 J-K flip-flops (toggle) . 30

9 Counters 31

10 Registros 35

10.1 Memories . 37

10.2 Estructura de memorias . 37

10.3 Operaciones sobre memorias . 38

10.3.1 Write . 38

vi

Digital Systems

10.3.2 Read . 39

10.4 ROM, SRAM, DRAM, EEPROM, Flash . 39

11 Project 41

vii

Chapter 1

Compuertas

Las compuertas son circuitos que se emplean para generar niveles lógicos digi- tales (o sea unos y
ceros, distinto a la electrónica lineal, que se preocupa por el valor en la curva) en formas espećıficas.

A continuación veremos algunas de las compuertas más importantes y se plantearón ejercicios
prácticos.

1.1 Inversor

Le inversor, o NOT, es una compuerta que dada una entrada entrega una salida con el valor de
entrada invertido. La notación que ocuparemos entonces para una entrada A negada será A. Un
circuito integrado que contiene compuertas NOT es el 7404; se ocupará en los laboratorios.

A A
0 1
1 0

El valor de la salida es el inverso de la entrada en este inversor simple:

Si la unión entre la base y el emisor de este transistor bipolar es equivalente a un diódo, se
puede esquematizar la corriente Ibe como función del voltaje Vbe. Cuando Vbe es inferior a 0,6V

1

Compuertas

la corriente a través de la base es aproximadamente cero. En esa condición el transistor no va a
conducir corriente desde el colector al emisor, y aparece como un interruptor abierto. Vout es alto
en este caso, porque está conectado a Vcc a través de resistencia R2. Si se aumenta Vbe, y supera a
0,6V, entonces la corriente Ibe va a empezar a fluir, la base del transistor va a contener electrones
libres, y la corriente Ice también puede fluir. Aśı, Vout baja hasta llegar a cero.

Vin

Vout

1 2 3 4 5

1

2

3

4

5

Dibujar la relación entre Vin y Vout. Que pasa con los voltajes de entrada intermedios?

1.2 NANDs

2

Digital Systems

AND / OR

Śımbolos lógicos

3

Compuertas

Exercises

1. Diseñar un circuito NOR simple en base a una compuerta OR y un NOT.

2. Diseñar un circuito XOR, un OR exclusivo, con compuertas AND, OR y NOT. La salida
es verdadera si una, y solo una, de las entradas es verdadera. La salida es falsa si las dos
entradas son iguales.

3. La salida de un circuito normal puede ser alto o bajo. En muchos casos es conveniente
tener también un estado adicional, en que la salida no es alto ni bajo, pero simplemente
no conduce. Esta caracteŕıstica es muy importante en busses de datos y comunicaciones.
Diseñar un circuito inversor (NOT) con transistores, que tiene una salida Y y dos entradas,
X y En (habilitación). La salida Y es la negación de X cuando En es alto. La salida no
conduce (ni alta ni baja) cuando En es bajo. Esto significa que ambos transistores arriba y
abajo de la salida están apagados cuando En no está habilitado.

4. Escribir la ecuación lógica correspondiente a la siguiente figura. El resultado es una forma
llamado ’suma de productos’ que se va a ver en los próximos caṕıtulos en lógica booleana.

4

Chapter 2

Boolean logic

En el primer módulo se mostró la forma de tratar voltajes y corrientes como números binarios, 0
y 1. Después se vió como manipularlos en compuertas para generar expresiones lógicas como el
AND, OR, NOT y NOR. Estas compuertas forman la base conceptual de la álgebra 1 booleana. 2

2.1 Teoremas Lógicas

2.1.1 Teoremas fundamentales

x * 0 = 0
x * 1 = x
x * x = x
x * x = 0

x + 0 = x
x + 1 = 1
x + x = x
x + x = 1

El śımbolo ’*’ significa AND, ’+’ significa OR. Aśı como en álgebra normal es común obviar el
śımbolo ’*’ en una expresión.

2.1.2 Teoremas de múltiples variables

x + y = y + x
x * y = y * x
x + (y + z) = (x + y) + z = x + y + z
x(yz) = (xy)z
x(y + z) = xy + xz

(w + x)(y + z) = wy + xy + wz + xz
x + xy = x
x + xy = x + y
x + xy = x + y

1La palabra álgebra tiene su ráız en la palabra al-jabr en Arabe, que significa restoration. Fue parte del t́ıtulo
de un libro del matemático Mohammad ibn-Musa al-Khowarismi, aprox. 825 AD, que también dió su nombre a
nuestro término algoritmo.

2George Boole (1815-1864) nació en una pobre familia obrera inglesa, pero por su fuerza de personalidad y aprecio
por la matemática, logró alcanzar los más altos niveles académicos de sus tiempos. Su trabajo cambió el estudio
de la lógica desde una orientación filosófica y le dió una base matemática, que es lo que nos permite hoy en d́ıa
tecnoloǵıa digital.

5

Boolean logic

2.1.3 Teoremas de DeMorgan

(x + y) = x * y (x ∗ y) = x + y

2.2 Simplificación de expresiones con álgebra booleana

z = (a + c) ∗ (b + d)

a una expresión que contiene unicamente variables simples invertidas.

z = (a + c) + (b + d)
z = a ∗ c + b ∗ d
z = a ∗ c + b ∗ d

Simplificar:

z = a + b ∗ c

Resultado:

z = a ∗ (b ∗ c)
z = a ∗ (b + c)
z = a ∗ (b + c)

z = a ∗ b + a ∗ c)

Simplificar:

w = (a + b ∗ c) ∗ (d + e ∗ f)

Resultado:

w = a ∗ b + a ∗ c + d ∗ e + d ∗ f

6

Digital Systems

2.3 Mapas de Karnaugh

Mapas Karnaugh 3 se utilizan para poder simplificar ecuaciones lógicas en forma gráfica. Se prepara
una planilla de las variables, en que las filas o columnas colindantes difieren solamente en el estado
de una variable. Por ejemplo, entre la columna 2 y 3 de una planilla, una variable va a figurar
negada en una columna y directa en la la otra. Las otras variables tienen el mismo estado en las
dos columnas.

A B X
0 0 1
0 1 0
1 0 0
1 1 1

Tabla de verdad
X = A ∗B + A ∗B
Ecuación lógica

B B
A 1 0
A 0 1

Diagrama de Karnaugh

A B C X
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

Tabla de Verdad
X = A ∗B ∗ C+
A ∗B ∗ C+
A ∗B ∗ C+
A ∗B ∗ C
Ecuación lógica

C C
AB 1 1
AB 1 0
AB 1 0
AB 0 0

Diagrama de Karnaugh

3Maurice Karnaugh, recibió su PhD en F́ısica de Yale en 1952, trabajó en Bell Labs, y después en IBM, hasta
1993. Inventor del primer sistema digital ’switching’ de comunicaciones

7

Boolean logic

A B C D X
0 0 0 0 0
0 0 0 1 0
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

Tabla de Verdad

X = A ∗B ∗ C ∗D+
A ∗B ∗ C ∗D+
A ∗B ∗ C ∗D+
A ∗B ∗ C ∗D+
A ∗B ∗ C ∗D+
A ∗B ∗ C

Ecuación lógica

CD CD CD CD

AB 0 0 1 1
AB 0 0 1 1
AB 0 0 0 0
AB 1 0 0 1

Mapa de Karnaugh

Exercises

• Verificar que la simplificación mediante álgebra booleana da los mismos resultados que las
mapas Karnaugh.

• Que ventaja tiene álgebra booleana con respecto a mapas K.?

8

Chapter 3

Combinatorial circuits

3.1 Decodificadores

Un decodificador n x m convierte un número binario de n bits a una ĺınea única de salida de un
máximo de m ĺıneas de salida.

x y z D0 D1 D2 D3 D4 D5 D6 D7

0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0
0 1 1 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 0 0 0 0 1

3.2 Codificadores

Codificadores (encoders) realizan la operación inversa de los decodificadores. Su salida es una de
m ĺıneas que es activada de acuerdo a cual de los 2m ĺıneas de entrada es activada. Una falla del
codificador común es que no diferencia entre una entrada con todos ceros, y una entrada con un

9

Combinatorial circuits

1 en la ĺınea 0. Resolver este problema requiere una entrada adicional de habilitación cuando una
de las entradas es activada.

D0 D1 D2 D3 D4 D5 D6 D7 x y z
1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 1 1
0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 0 1 0 1
0 0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1 1 1 1

A priority encoder is an encoder that will only react to one of the inputs. You can imagine a
problem with the normal encoder that would occur if several inputs were activated at the same
moment. A priority encoder resolves this problem.

The Boolean equations for this circuit are:

x = D2 + D3

y = D3 + D1D2

V = D0 + D1 + D2 + D3

10

Digital Systems

3.3 Multiplexores

Un multiplexor es similar a un decodificador. Tiene dos tipos de entradas; una entrada es un
conjunto de ĺıneas representando datos, y la otra entrada es una dirección que selecciona cual ĺınea
de entrada aparece en la salida. Es similar a un equipo de música que tiene varios micrófonos
como entrada, y selecciona uno para enviar a los parlantes. Tiene solo una ĺınea de salida. Los
multiplexores son muy usados en microprocesadores y memorias.

Exercises

• Definir la tabla de verdad de un codificador de prioridad que activa la ĺınea correspondiente
a la entrada más alta. Utiliza una salida de validéz igual a cero si ninguna de las entradas es
activida.

• Diseñar un circuito para el codificador de prioridad de 4 entradas.

• Diseñar un circuito para convertir código Gray de 4 bits a código binario.

• Diseñar un circuito para comparar 2 números de 4 bits y generar un 1 si son iguales, o un 0
si difieren.

• Dibujar un decodificador de 2 x 4, con una ĺınea de habilitación, utilizando unicamente
compuertas NOR.

11

Combinatorial circuits

12

Chapter 4

Digital arithmetic

La presentación de aritmética digital empieza con representación de números en binario y hex-
adecimal. Después se describen circuitos para realizar sumas, y la representación de números en
complemento a dos, lo que facilita la realización de restas en hardware.

4.1 Sumas en binario y en hex

Realizar una suma en binario es simple, pero muy tedioso. Se tiene que recordar simplemente que
102 = 210 y que el segundo d́ıgito es acarreo. Por ejemplo:

1 1 0 1 1310

+ 0 1 0 1 510

1 0 0 1 0 1810

Este ejemplo muestra también que los dos números que se suman se pueden representar en 4 d́ıgitos
binarios, mientras el resultado requiere 5. Esto no tiene que ver con que se está sumando números
binarios, pero śı tiene que ver con el hecho que las sumas se hacen en un computador con una
representación de números con precisión finita y limitada. Por ejemplo, un sistema con 16 bits
para enteros positivos y negativos (1 bit para el signo), puede representar 216 = 65536 números
diferentes, tipicamente de -32768 hasta 32767 (no se olvida el cero).
Sumas en hex son escencialmente lo mismo. Uno se encuentra sumando y restando en hex cuando
está analizando el stack en un programa para determinar desfazajes y bifurcaciones. Por ejemplo,
si el puntero a la dirección de una ĺınea de código (el PC, program counter) está en 0x8440, y una
bifurcación apunta a treinta sentencias más adelante (3010 = 0x1E) o sea 240 (24010 = 0xF0)
bytes más adelante en una máquina de 32 bits, entonces tiene que sumar:

0x8440
+ 0xF0
0x8530

13

Digital arithmetic

4.2 Medio sumador

Para generar un circuito para realizar sumas, sumas de solo un bit, es conveniente empezar con la
tabla de verdad, donde se suman A y B para dar la suma S, y el acarreo C:

A B S C
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Al mirar la tabla de verdad es claro que el acarreo es simplemente un AND de A y B, mientras la
suma es el XOR de A y B. Este circuito no tiene un acarreo entrante.

4.3 Sumador completo

Se inicia el análisis de un sumador completo con su tabla de verdad. Las entradas son A y B, al
igual que el medio sumador, y también tiene un acarreo entrante, que vamos a llamar Ci. La salida
del circuito es la suma, S, y el acarreo saliente, Co.
A B Ci S Co

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Para resolver esta tabla de verdad, se puede simplificar utilizando los teoremas booleanos, o mapas
de Karnaugh. Las ecuaciones son:
S = A ∗B ∗ Ci + A ∗B ∗ Ci + A ∗B ∗ Ci + A ∗B ∗ Ci

Co = A ∗B + A ∗ Ci + B ∗ Ci

14

Digital Systems

El circuito ilustrado aqúı es el conjunto de dos sumadores medios más una compuerta OR. La suma
es 1 cuando el número de entradas en 1 es impar, por eso el XOR del XOR. El acarreo saliente es
un AND de las entradas, o un AND del XOR de las entradas y el acarreo entrante.

4.4 Complemento a dos

La representación de números negativos es un aspecto importante de aritmética digital. La repre-
sentación simple, llamado signo - magnitud, es de utilizar un bit para el signo, y los otros bits para
la magnitud. Por ejemplo, si utilizamos 5 bits total, podemos representar números de la siguiente
manera:

0 0 1 0 0 410

1 0 1 0 0 −410

0 1 1 0 0 1210

1 1 0 1 0 −1010

El problema con la representación signo-magnitud es que no podemos sumar números positivos y
negativos juntos. Por ejemplo, el resultado de 12 + (-10) es 6 (0110 en 4 bits) y no se sabe que
hacer con el bit del signo.

Una alternativa (no la única) es la representación en complemento a dos que se utiliza en los
computadores desde los años ’80. Números con signo se representan en este formato porque es
muy simple y rápido convertir de una representación a otra, y permite realizar aritmética con o
sin signo en un solo circuito.

Para determinar un número en complemento a dos, se escribe su magnitud (el valor absoluto), se
complementan todos los bits del número (los 1’s se cambian a 0’s y vice versa), y se le suma 1.
Por ejemplo, para encontrar la representación de −1210 en complemento a dos, con 4 bits más un
bit para el signo:

15

Digital arithmetic

1210 → 011002

01100
10011

+ 1
10100

10100
01011

+ 1
01100

Para encontrar la magnitud de un número de complemento a dos se hace exactamente el mismo
procedimiento; complementar cada d́ıgito y sumarle 1. Para comprobar que la conversión ha sido
correcta, se puede sumar los 2 números:

01100
+ 10100
100000

El resultado es cero, como corresponde, pero con un acarreo demás, que tenemos que descartar.

Exercises

• Asegúrese que está familiarizado con la conversión entre números binarios, decimales y hex-
adecimales.

• Diseñar un medio sumador utilizando 3 compuertas AND y 1 OR sobre las entradas directas
y las entradas negadas.

• Diseñar un medio sumador utilizando 2 compuertas AND, 1 OR y 1 NOT sobre las entradas
directas y las entradas negadas.

• Diseñar un sumador completo utilizando 3 compuertas AND y 1 OR para la suma, y 3 AND
más 1 OR para el acarreo.

• Practicar realizando conversiones de signo-magnitud a complemento a dos.

16

Chapter 5

Arithmetic and logical unit: ALU

5.1 Sumador

Recordando el sumador completo:
A B Cin Σ Cout

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Σ = Cin

⊗
(A

⊗
B)

Cout = A ∗B + Cin ∗ (A
⊗

B)
Cout = A ∗B ∗ Cin + (A ∗ (B + Cin)

La tabla de verdad del sumador completo puede implementarse de varias maneras, un ejemplo
simple utiliza las compuertas XOR. Este sumador sirve para sumar solamente 1 bit. Si se desea
sumar multiples bits, por ejemplo los 32 bits de una palabra en un PC, se pueden juntar 32
sumadores de 1 bit.

17

Arithmetic and logical unit: ALU

Sumador Completo Representación en bloque

El conjunto de sumadores se llama ’ripple’, o paralelo, porque hay una propagación de sumas desde
el primer bit hasta el último. Nótese que la suma del primer bit tiene que terminar antes que se
puede iniciar la suma del segundo bit, lo que hace que este sumador es más lenta con generación
de acarreo anticipada.

Para reducir la demora en un sumador paralelo, se puede diseñar un circuito para generar el acarreo
anticipadamente. Definamos dos variables intermedias en el diagrama del sumador completo:
Pi = Ai

⊗
Bi

Gi = Ai ∗Bi

entonces la suma y acarreo pueden representarse como:
Si = Pi

⊗
Ci

Ci+1 = Gi + Pi ∗ Ci

El acarreo en Ci+1 va a generarse siempre cuando Gi sea 1. También hay una propagación del
acarreo desde la anterior suma cuando Pi sea 1. Las ecuaciones llegan a ser largas, pero permiten
calcular el acarreo rapidamente.

18

Digital Systems

C2 = G1 + P1 ∗ C1

C3 = G2 + P2 ∗ C2

= G2 + P2 ∗ (G1 + P1 ∗ C1)
= G2 + P2 ∗G1 + P2 ∗ P1 ∗ C1

C4 = G3 + P3 ∗G2 + P3 ∗ P2 ∗G1 + P3 ∗ P2 ∗ P1 ∗G1

y aśı sucesivemente.

5.2 Comparación de magnitudes

La comparasión de magnitudes de números es fundamental para la evaluación de condiciones en la
ejecución de programas. Por ejemplo, código puede pedir que se ejecute un bloque si un número
es igual o menor que otro. Al traducir este código a ensamblador resulta en una bifurcacón
condicional; si el primero es mayor, entonces saltar a otra instrucción más adelante.

Tomemos:
A = A3A2A1A0

B = B3B2B1B0

Los dos números son iguales si:
xi = (Ai

⊗
Bi) = Ai ∗Bi + Ai ∗Bi = 1

para todo i. Para determinar si (A > B), hay que evaluar cada columna de los números sucesive-
mente:
(A > B) = A3 ∗B3 + x3 ∗A2 ∗B2 + x3 ∗ x2 ∗A1 ∗B1 + x3 ∗ x2 ∗1 ∗A0 ∗B0

El circuito no es tan complejo como podŕıa parecer porque se pueden utilizar las mismas compuertas
para cálcular xi como para las inigualdades.

19

Arithmetic and logical unit: ALU

5.3 Integración de la ALU

Con los circuitos aritméticos, de comparasión y las operaciones lógicas, se completan los compo-
nentes básicos de una ALU. Es necesario integrarlos, y poder seleccionar que operación realizar.
Tomemos como ejemplo una ALU de cuatro funciones. Entonces el control de ejecución de una
instrucción en ensamblador requiere 2 ĺıneas para selección de la operación, a través de un multi-
plexor (2 ĺıneas de dirección, 4 ĺıneas de salida). El ejemplo graficado es una ALU de 1 bit, con
las operaciones:
AandB
AorB
B
A + B
Las ĺıneas F0, F1 controlan que resultado aparece a la salida de la ALU.

Exercises

• Diseñar un circuito para generación de acarreo para 4 bits.

• Verificar los valores intermedios del comparador de magnitudes de 2 bits.

• Diseñar un circuito para comparar la magnitud de dos números de 4 bits.

20

Digital Systems

• Para reducir el consumo energético de una ALU conviene no activar compuertas que no
intervienen en una operación. Existe una posibilidad de reducir las compuertas actividades
en la ALU graficada?

21

Arithmetic and logical unit: ALU

22

Chapter 6

Eagle

Objetive

• Conocer el procedimiento para fabricar un circuito impreso utilizando herramientas de soft-
ware.

Circuit design is a process that includes

• Decide what your circuit must do

• Create a general overview of your circuit

• Design the schematic, with components and connections

• Simulate the circuit to make sure it does what you want

• Export the schematic to a printed circuit board software

• Place the components on the PCB and route the networks

• Send the finished PCB design to a circuit manufacturer

• Populate the PCB with components

• Install the system, charge your customer and celebrate

Many software tools are available to help in these processes, commonly called EDA (Electronic
Design Automation) tools, which are in the general category of CAD (Computer Aided Design).
This class / laboratory will introduce one such software product, Eagle.

Eagle is a software product produced by Cadsoft, a German firm, that is available for both Linux
and Windows, through their site at www.cadsoft.de. Eagle includes both schematic capture and
PCB layout. Cadsoft offers a free version that is limited in that it can be used for making circuits
up to 80mm x 100mm, but no more.

23

Eagle

The best way to learn Eagle is to follow their guided tour available at http://www.cadsoft.de/Tour/tour01.htm
where a couple NAND gates are placed on the schematic, and a PCB is set up with a PIC micro-
processor and a few discrete components. Follow the tour, it’s easy.

Exercises

• Find out what is the software called Spice, and if it would be useful for you.

• What tools are inclued in gEDA?

• The most important exercise is to design and illustrate your circuit.

24

Chapter 7

Flip flops

Objetive

• Describir mecanismos básicos de lógica secuencial

• Identificar diferentes tipos de flip-flops

References

• Ronald J. Tocci (2001), Digital Systems: Principles and Applications, 8th Edition, Prentice
Hall, Caṕıtulo 5

• Patterson and Hennesey (1997), Computer Organization and Design, 2nd Edition, Morgan
Kauffman, Appendix B

7.1 Lógica combinacional vs. secuencial

Circuitos de lógica combinacional tienen salidas que dependen exclusivemente de las entradas al
circuito. Ejemplos de circuitos combinacionales son multiplexores, codificadores y circuitos ar-
itméticos. La salida de un circuito de lógica secuencial depende de las entradas, pero también
depende del estado anterior del circuito. Ejemplos de circuitos secuenciales son contadores, reg-
istros y memorias. Circuitos secuenciales se basan en un componente llamado el flip-flop (FF),
que significa rebote, o dar vuelta. El término formal para el FF es biestable multivibrador, pero
este nombre suena más como un nuevo producto para relajación personal que un circuito lógico.

25

Flip flops

7.2 S-C (S-R) NAND FF

El FF más simple se compone de dos compuertas NAND (o dos NOR’s). Recordemos la tabla de
verdad de un NAND.

A B NAND
0 0 1
0 1 1
1 0 1
1 1 0

El S-C FF se compone de dos NANDs con la salida retroalimentando la entrada de la otra com-
puerta.

Para analizar el funcionamiento del FF, se supone que las salidas Q y Q tienen valores invertidos;
cuando Q == 1, entonces Q == 0, y vice versa. Las entradas S y C van a estar normalmente en
el estado alto (== 1) y se pulsan abajo para modificar las salidas. Cuando S = C = 1, hay dos
estados de las salidas igualmente probables, y que dependen de los valores anteriores de Q y Q.
Este hecho, que la salida depende del valor anterior, es lo que hace que los FF sean los componentes
básicos de las memorias.

Suponiendo que S = C = 1, entonces el valor de Q será 0 si es Q también era 1, sino Q será 1.
Igualmente con esta entrada, Q será 0 si Q era 1, sino Q será 1. Conviene trazar estos valores por
el circuito para convencerse de su funcionamiento.

Representación en bloque de un S-C FF

Resumen de funcionamiento NAND latch

S C Salida
1 1 sin cambio
0 1 Q = 1
1 0 Q = 0
0 0 inválido

Se dice que la entrada S = C = 0 es inválida no porque no se le puede aplicar la combinación, en esta
situación las salidas son Q = Q= 1. Se prefiere mantener las salidas con valores complementarios,

26

Digital Systems

entonces se trata de evitar esta entrada. Si las dos entradas, estando en niveles bajos, se levantan
simultaneamente, el valor que toma la salida es dificil determinar, al final una de las entradas va
a subir antes que la otra, y el valor de la salida va a determinarse cual sube más lentamente.

7.3 NOR latch

Un S-C flip-flop puede fabricarse de dos compuertas NOR de una manera muy parecida a un
NAND latch. La diferencia es que las entradas son invertidas; S = C = 0 es la posición normal de
reposo en que las salidas no cambian, y se activa las entradas subiendo S o C a 1. El estado S =
C = 1 es el estado inválido.

Resumen de funcionamiento
NOR latch

S C Salida
0 0 sin cambio
1 0 Q = 1
0 1 Q = 0
1 1 inválido

7.4 S-C flip-flops con reloj

Para reducir la posibilidad de ocurrencia de estados de entrada inválidos, se puede gatillar la
entrada con un pulso de reloj. Los valores de entrada al FF (Set y Clear en el diagrama) se
mantienen en 1 siempre que el reloj esté abajo. En este estado, las salidas no van a cambiar, de
acuerdo a la tabla de funcionamiento (verdad) del circuito.
Este circuito sigue con el problema de indefinición de la salida: si S = C = 1 y el reloj sube a 1,
después baja, entonces no se sabe que valores van a estar en la salida.

27

Flip flops

El otro circuito ilustrado es un generador de flancos. Cuando la entrada cambia, la salida va a
cambiar durante un peŕıodo muy breve, equivalente al tiempo que demora la compuerta NOT en
cambiar de valor.

Exercises

• Un circuito para remover rebotes de un interruptor puede fabricarse de un FF NAND. El
interruptor tiene dos posiciones, ambas conectadas a entradas al FF S-C. Las dos entradas
S-C están llevado arriba a través de una resistencia. Como funciona este circuito?

28

Chapter 8

J-K Flip flops

Objetive

• Describir mecanismos básicos de lógica secuencial

• Identificar diferentes tipos de flip-flops

References

• Ronald J. Tocci (2001), Digital Systems: Principles and Applications, 8th Edition, Prentice
Hall, Caṕıtulo 5

• Patterson and Hennesey (1997), Computer Organization and Design, 2nd Edition, Morgan
Kauffman, Appendix B

8.1 D flip-flops

Un FF llamado ’D’, por datos, elimina el estado indefinido, porque tiene solo una entrada. Este tipo

29

J-K Flip flops

de FF es comunmente utilizado en registros y memorias, porque el dato de entrada es mantenido
hasta el próximo pulso del reloj de la entrada.

8.2 J-K flip-flops (toggle)

El J-K FF extiende la retroalimentación de las salidas para también ingresarla a las entradas,
ahora llamas J y K. Cuando las entradas J y K están en 1, y se aplica un pulso al reloj, entonces
las salidas se complementan, se invierten.

J K Q1

0 0 Q0

1 0 1
0 1 0
1 1 Q0

La tabla caracteŕıstica demuestra que la salida cambia de valor cuando J = K = 1. El diagrama
de bloque de un FF J-K demuestra que la entrada del reloj es sobre el flanco de bajada del pulso
del reloj.

Exercises

• Realizar el seguimiento de los estados internos de los FF J-K, y D.

• Dibujar la traza de salida de un FF J-K cuando J = K = 1, y se aplica un tren de pulsos al
reloj.

• Conectar la salida Q de un J-K al reloj de un segundo J-K, mantener las entradas en 1.
Dibujar las trazas de las salidas Q de ambos FF junto con un tren de pulsos al reloj.

• Un circuito para remover rebotes de un interruptor puede fabricarse de un FF NAND. El
interruptor tiene dos posiciones, ambas conectadas a entradas al FF S-C. Las dos entradas
S-C están llevado arriba a través de una resistencia. Como funciona este circuito?

30

Chapter 9

Counters

Objetive

• Entender división de frecuencias para contadores

• Entender contadores de diferentes módulos

• Entender contadores asincrónicos y paralelos

Reference

Digital Systems, Ronald Tocci, Cap. 7

Divisor de frecuencia

31

Counters

El peŕıodo de oscilación de la salida de cada f-f es doble de la salida del f-f anterior en la cadena.
Si se toman un corte vertical a las salidas se obtiene un contador binario. En este caso, con 4 f-f’s
el contador llega hasta 16: se llama un contador módulo 16. Este tipo de contador es un contador
asincrónico, o ’ripple’ por que los pulsos (y los cambios de estado) se propagan secuencialmente a
lo largo del circuito. Los cambios en estado de cada f-f no son sincronizados.

Contador módulo 10

El contador de módulo != 2n se efectúa utilizando las entradas no-sincrónicas de los f-f. Las salidas
(Q) de los f-f se ingresan a una compuerta NAND, y la salida del NAND entra a la entrada ’CLR’
de los f-f. Cuando la salida de los f-f equivale al número deseado, la salida del NAND será 0, y
consecuentemente se activa el CLR de los f-f, y el conteo se inicia de nuevo desde 0.

32

Digital Systems

Contador sincrónico

Con este circuito los intercambios de estado de las salidas de los f-f están sincronizados porque
las entradas del reloj son en un solo pulso. El cambio de estado de las salidas de los f-f está
habilitado cuando todos los f-f anteriores están en 1. Sino, las entradas J-K están en cero, y los f-f
se mantienen en su estado anterior.

Nótese la diferencia con el divisor de frecuencia, o el contador módulo 10 en que las entradas J y K
se mantienen arriba, y la salida de cada f-f es la entrada de reloj al f-f siguiente. En este caso las
entradas J y K se mantienen en cero (sin cambio a la salida) salvo cuando el AND de las salidas
anteriores esté en uno. Esto genera un intercambio (toggle) de la salida del f-f.

Exercises

• Diseñar un contador md́ulo N, es decir un contador en que el usuario puede elegir hasta que
número cuenta.

• Elegir un cristal de frecuencia conocida y calcular de que manera podŕıa obtener de ella una
frecuencia de 9600Hz.

• Que salidas tiene este circuito? Es un contador?

33

Counters

34

Chapter 10

Registros

Objetive

• Entender como registros pueden almacenar y transferir datos

• Diferenciar entre registros paralelos y seriales

Reference

Digital Systems, Ronald Tocci, Caṕıtulo 5-[17,18,19]

Registro de transferencia paralelo

35

Registros

Cuando se pulsa el reloj, los datos se transfieren desde el registro superior al registro inferior.

Registro de transferencia serial, escurrimiento

Cuando se pulsa el reloj, los datos se transfieren desde el un f-f al f-f adyacente.

Registro de transferencia serial bidireccional, carga paralelo

De ida y vuelta, izquierda o derecha

Las comunicaciones seriales tradicionales en PC’s ocupaban UART’s (Universal Asynchronous
Receiver-Transmitter), por ejemplo el 8250, 16450, 16550, 16550A. Bluetooth también ocupa
UART’s. Microprocesadores modernos frecuentemente incorporan UART’s, por ejemplo los PIC.

36

Digital Systems

El propósito de la UART es transformar un conjunto de bits en formato paralelo a un secuencia
de bits en formato serial. Contiene un registro paralelo / serial. Una USART hace lo mismo, pero
agrega una ĺınea con reloj para sincronizar los dos extremos de la ĺınea de datos.

Una comunicación seriales normales env́ıan un bit indicando inicio del byte (start bit), un conjunto
de bits para el byte de datos en formato LSB primero, después un bit opcional de paridad, y termina
con un bit de término. El valor de start bit debe ser el contrario al estado normal de la ĺınea,
mientras el stop bit debe ser el estado normal. Por ejemplo, si la ĺınea normalmente está con cero
voltios, el start bit debe ser alto. El nivel de voltaje es establecido por otro chip, por ejemplo el
MAX232.

Para evitar confusiones, es conveniente expresar la tasa de comunicaciones en términos de bits por
segundo, y no ocupar ’baud’. Este último se refiere a cuantas transiciones en estado (por ejemplo,
voltaje) hay por segundo. Sistemas modernos de comunicación codifican multiples bits en cada
transición para poder aumentar los bits por segundo sin modificar el baud.

10.1 Memories

Celda La unidad básica que almacena un bit. Puede ser un flip-flop, un capacitor, un toroide
magnético, un punto sobre el CD

Palabra La unidad básica de direccionamiento de memoria compuesto de un conjunto de celdas.
Tipicamente va desde 8 bits hasta 64 bits.

BigEndian / LittleEndian Ordenamiento de los bytes en una palabra. Internet, Motorola son
BigEndian, Intel es LittleEndian.

Ejemplo de ’Leo Rojas 21 4’, Nombre, edad, sala...
BigEndian
Dirección Valor

bytes: 0 1 2 3
0 L e o
4 R o j a
8 s
12 21
26 4

LittleEndian
Dirección Valor

bytes: 3 2 1 0
0 o e L
4 a j o R
8 s
12 21
26 4

Densidad Especificación de la capacidad de almacenamiento de memoria. Tipicamente se refiere
al número de palabras por número de bits por palabra. Por ejemplo, 32K x 16 significa 32 *
210 palabras y que cada palabra tiene 16 bits.

10.2 Estructura de memorias

Memoria puede considerarse como un conjunto de registros organizados como palabras, en filas y
columnas. Se puede especificar una dirección que se decodifica para habilitar lectura o grabación
de una fila de memoria. Los datos a grabar o léıdos entran o salen por un bus de datos (a la
derecha en el dibujo). El bloque de memoria (o chip) está habilitado por una ĺınea llamada ’chip
select’. Cuando el chip no está habilitado, no se puede leer ni grabar la memoria. Cuando lectura

37

Registros

está seleccionado, el chip está seleccionado y se habilita la salida, entonces se puede leer las filas
de la memoria. Para ello, cada fila es habilitado por la dirección decodificada.

Estructura de Memoria RAM

10.3 Operaciones sobre memorias

10.3.1 Write

1. CPU coloca dirección de memoria sobre bus de direcciones

2. CPU coloca datos sobre bus de datos

3. CPU activa las ĺıneas correspondientes para grabación

38

Digital Systems

4. IC’s de memoria decodifican dirección para determinar que palabras se seleccionen.

5. Datos sobre el bus de datos se transfieren a la ubicación seleccionada.

10.3.2 Read

1. CPU coloca dirección de memoria sobre bus de direcciones

2. CPU activa las ĺıneas correspondientes para lectura

3. IC’s de memoria decodifican dirección para determinar que palabras se seleccionen.

4. IC’s de memoria colocan los datos al bus de datos para la CPU.

10.4 ROM, SRAM, DRAM, EEPROM, Flash

Read Only Memory Procesadores chicos de sistemas embutidos fabricados en gran volmenes
tienen sus programas quemados en ROM en el procesador durante la fabricación del chip.
Un MOSFET sirve para cada celda.

PROM, EPROM, EEPROM ROM’s que el usuario puede programar, cuando se aplica un
voltaje alto a las conexiones a cero del source del MOSFET se quema la conexión, y aśı
dejar la celda en alto. Erasable PROM’s. Se pueden borrar, tipicamente con luz ultravioleta.
El circuito tiene una ventanita transparente. Estos circuitos eran los más populares para
aplicaciones de pocas unidades. Electrically Erasable PROM. Puede borrar palabras con
una corriente eléctrica, no necesariamente con ultravioleta. Esto significa que lo puedes
borrar dentro del circuito de aplicación.

Flash Estructuralmente es semejante al EPROM, pero el ’gate’ tiene una capa de óxido más
delgado, por lo que puede borrarse eléctricamente dentro del circuito de aplicación.

DRAM Dynamic RAM. SRAMs (memoria estática) guarda el dato en flip-flops. Celdas DRAM
son capacitores, que gradualmente pierden su carga, por lo que tiene que refrescarse peri-
odicamente. Los capacitores tiene un amplificador para detectar la carga sobre el capacitor.
Son más pequeñas y consumen menos enerǵıa, pero no tan rápidas. Memoria principal de
los PC’s es DRAM. Cache segundario es SRAM, alguna memoria de video también.

En DRAMs actuales, las direcciones son multiplexados. Dos ĺıneas, CAS (Column Address
Select) y RAS (Row Address Select) reemplazan el CS de las memorias más simples. Por
ejemplo, una DRAM de 16M x 1 requiere 24 bits de direccionamiento en forma simple
(s24 = 16M). Con multiplexado requiere 12 bits (en 2 pasos, primero para columnas y
después para filas), require también CAS y RAS, pero no requiere CS. Es un total de 11 bits
menos.

FPM DRAM Fast Page Mode DRAM permite acceso más rápido a memoria en la misma
’página’ de acceso anterior porque solo los bits menos significativos cambian

EDO DRAM Extended Data Output DRAM es un FPM DRAM con un ’latch’ después
del amplificador que permite CAS cambiar su valor cuando el latch recibe el valor de la
celda.

SDRAM Synchronous DRAM lee lecturas de datos secuenciales mediante el reloj del bus,
no CAS. La primer lectura es la misma velocidad que DRAM normal, pero las lecturas
secuenciales son mucho más rápidas

39

Registros

DDRSDRAM Double Data Rate SDRAM, opera con el reloj del sistema, pero realiza una
lectura en el flanco de subida y una en el flanco de bajada

SLDRAM Synchronous Link DRAM, una mejora al DDRSDRAM. Funciona con relojes de
bus hasta 200MHz.

DRDRAM Direct Rambus DRAM, integra un bus en el módulo de memoria.

Exercises

• Desarrollar las señales necesarias para control el registro de carga paralelo y descarga serial.

• Definir los circuitos necesarios para calcular la paridad en una UART.

• Definir los circuitos necesarios para determinar el start y stop bits en una UART.

• Cual es mejor, Little Endian, o Big Endian?

• Que diferencias hay entre FLASH y EPROM?

• Como pod́ıa ser usado un anillo magnético para memoria?

• Un bloque de memoria contiene 2048 palabras de 16 bits. Cuantas ĺıneas de control, entrada
y salida requiere.

• Cual es más conveniente: un bloque de memoria de 1024 palabras de 32 bits, o 2048 palabras
de 16 bits?

• Como funciona el ’pendrive’?

• Que es ’flash puppy’?

• Que es una ’MMU’, Memory Management Unit?

40

